Cytotoxic necrotizing factor-Y boosts Yersinia effector translocation by activating Rac protein.
نویسندگان
چکیده
Pathogenic Yersinia spp. translocate the effectors YopT, YopE, and YopO/YpkA into target cells to inactivate Rho family GTP-binding proteins and block immune responses. Some Yersinia spp. also secrete the Rho protein activator cytotoxic necrotizing factor-Y (CNF-Y), but it has been unclear how the bacteria may benefit from Rho protein activation. We show here that CNF-Y increases Yop translocation in Yersinia enterocolitica-infected cells up to 5-fold. CNF-Y strongly activated RhoA and also delayed in time Rac1 and Cdc42, but when individually expressed, constitutively active mutants of Rac1, but not of RhoA, increased Yop translocation. Consistently, knock-out or knockdown of Rac1 but not of RhoA, -B, or -C inhibited Yersinia effector translocation in CNF-Y-treated and control cells. Activation or knockdown of Cdc42 also affected Yop translocation but much less efficiently than Rac. The increase in Yop translocation induced by CNF-Y was essentially independent of the presence of YopE, YopT, or YopO in the infecting Yersinia strain, indicating that none of the Yops reported to inhibit translocation could reverse the CNF-Y effect. In summary, the CNF-Y activity of Yersinia strongly enhances Yop translocation through activation of Rac.
منابع مشابه
The Rac-activating toxin cytotoxic necrotizing factor 1 oversees NK cell-mediated activity by regulating the actin/microtubule interplay.
The cell cytoskeleton is widely acknowledged as a master for NK cell function. Specifically, actin filaments guide the NK cell binding to target cells, engendering the formation of the so-called immunological synapse, while microtubules direct the killer behavior. All these cytoskeleton-dependent activities are competently governed by the Rho GTPases, a family of regulatory molecules encompassi...
متن کاملInteraction of Yersinia pestis with macrophages: limitations in YopJ-dependent apoptosis.
The enteropathogenic Yersinia strains are known to downregulate signaling pathways in macrophages by effectors of the type III secretion system, in which YopJ/YopP plays a crucial role. The adverse effects of Yersinia pestis, the causative agent of plague, were examined by infecting J774A.1 cells, RAW264.7 cells, and primary murine macrophages with the EV76 strain and with the fully virulent Ki...
متن کاملYersinia Controls Type III Effector Delivery into Host Cells by Modulating Rho Activity
Yersinia pseudotuberculosis binds to beta1 integrin receptors, and uses the type III secretion proteins YopB and YopD to introduce pores and to translocate Yop effectors directly into host cells. Y. pseudotuberculosis lacking effectors that inhibit Rho GTPases, YopE and YopT, have high pore forming activity. Here, we present evidence that Y. pseudotuberculosis selectively modulates Rho activity...
متن کاملThe GAP Activity of Type III Effector YopE Triggers Killing of Yersinia in Macrophages
The mammalian immune system has the ability to discriminate between pathogens and innocuous microbes by detecting conserved molecular patterns. In addition to conserved microbial patterns, the mammalian immune system may recognize distinct pathogen-induced processes through a mechanism which is poorly understood. Previous studies have shown that a type III secretion system (T3SS) in Yersinia ps...
متن کاملThe role of VASP in regulation of cAMP- and Rac 1-mediated endothelial barrier stabilization.
Regulation of actin dynamics is critical for endothelial barrier functions. We provide evidence that the actin-binding protein vasodilator-stimulated phosphoprotein (VASP) is required for endothelial barrier maintenance. Baseline permeability was significantly increased in VASP-deficient (VASP(-/-)) microvascular myocardial endothelial cells (MyEnd) in the absence of discernible alterations of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 288 32 شماره
صفحات -
تاریخ انتشار 2013